Enhanced Lithiation of Doped 6H Silicon Carbide (0001) via High Temperature Vacuum Growth of Epitaxial Graphene

نویسندگان

  • Albert L. Lipson
  • Sudeshna Chattopadhyay
  • Hunter J. Karmel
  • Timothy T. Fister
  • Jonathan D. Emery
  • Vinayak P. Dravid
  • Michael M. Thackeray
  • Paul A. Fenter
  • Michael J. Bedzyk
  • Mark C. Hersam
چکیده

The electrochemical lithiation capacity of 6H silicon carbide (0001) is found to increase by over 1 order of magnitude following graphitization at 1350 °C in ultrahigh vacuum. Through several control experiments, this Li-ion capacity enhancement is correlated with SiC substrate doping and removal of the native oxide surface layer by thermal annealing, which renders both the bulk and surface electrically conductive. Characterization via multiple depth-resolved spectroscopies shows that lithium penetrates the activated SiC upon lithiation, the bulk lattice spacing does not appreciably change, and the surface structure remains largely intact. The electron energy-loss spectroscopy (EELS) extracted compositional ratio of Li to Si is approximately 1:1, which indicates an intrinsic bulk Li capacity in activated SiC of 670 mAh g−1. In addition, inelastic X-ray scattering spectra show changes in the Si chemical bonding configuration due to lithiation. X-ray scattering data show a decrease in the SiC Bragg peak intensity during lithiation, suggesting changes to the bulk crystallinity, whereas the emergence of a diffuse scattering feature suggests that lithiation is associated with the development of substrate defects. Overall, these results illustrate that the electrochemical capacity of a traditionally inert refractory material can be increased substantially via surface modification, thus suggesting a new strategy for improving the performance of next generation Li-ion battery electrodes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flower-Shaped Domains and Wrinkles in Trilayer Epitaxial Graphene on Silicon Carbide

Trilayer graphene is of particular interest to the 2D materials community because of its unique tunable electronic structure. However, to date, there is a lack of fundamental understanding of the properties of epitaxial trilayer graphene on silicon carbide. Here, following successful synthesis of large-area uniform trilayer graphene, atomic force microscopy (AFM) showed that the trilayer graphe...

متن کامل

Epitaxial growth of graphene on 6H-silicon carbide substrate by simulated annealing method.

We grew graphene epitaxially on 6H-SiC(0001) substrate by the simulated annealing method. The mechanisms that govern the growth process were investigated by testing two empirical potentials, namely, the widely used Tersoff potential [J. Tersoff, Phys. Rev. B 39, 5566 (1989)] and its more refined version published years later by Erhart and Albe [Phys. Rev. B 71, 035211 (2005)]. Upon contrasting ...

متن کامل

Large homogeneous mono-/bi-layer graphene on 6H-SiC(0001) and buffer layer elimination

In this paper we discuss and review results of recent studies of epitaxial growth of graphene on silicon carbide. The presentation is focused on high quality, large and uniform layer graphene growth on the SiC(0001) surface and results of using different growth techniques and parameters are compared. This is an important subject because access to high quality graphene sheets on a suitable subst...

متن کامل

Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide.

After the pioneering investigations into graphene-based electronics at Georgia Tech, great strides have been made developing epitaxial graphene on silicon carbide (EG) as a new electronic material. EG has not only demonstrated its potential for large scale applications, it also has become an important material for fundamental two-dimensional electron gas physics. It was long known that graphene...

متن کامل

Structural and electronic properties of epitaxial graphene on SiC(0001): A review of growth, characterization, transfer doping and hydrogen intercalation

Graphene, a monoatomic layer of graphite hosts a two-dimensional electron gas system with large electron mobilities which makes it a prospective candidate for future carbon nanodevices. Grown epitaxially on silicon carbide (SiC) wafers, large area graphene samples appear feasible and integration in existing device technology can be envisioned. This article reviews the controlled growth of epita...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012